Td Point Group
not Abelian, 5(10) irreducible representationsCharacter table for Td point group
E | 8C3 | 3C2 | 6S4 | 6σd | linear, rotations | quadratic | |
---|---|---|---|---|---|---|---|
A1 | 1 | 1 | 1 | 1 | 1 | x2+y2+z2 | |
A2 | 1 | 1 | 1 | -1 | -1 | ||
E | 2 | -1 | 2 | 0 | 0 | (2z2-x2-y2, x2-y2) | |
T1 | 3 | 0 | -1 | 1 | -1 | (Rx, Ry, Rz) | |
T2 | 3 | 0 | -1 | -1 | 1 | (x, y, z) | (xy, xz, yz) |
Product table for Td point group
A1 | A2 | E | T1 | T2 | |
---|---|---|---|---|---|
A1 | A1 | A2 | E | T1 | T2 |
A2 | A2 | A1 | E | T2 | T1 |
E | E | E | A1+A2+E | T1+T2 | T1+T2 |
T1 | T1 | T2 | T1+T2 | A1+E+T1+T2 | A2+E+T1+T2 |
T2 | T2 | T1 | T1+T2 | A2+E+T1+T2 | A1+E+T1+T2 |
C1 | Cs | Ci | ||
C2 | C3 | C4 | C5 | C6 |
C2v | C3v | C4v | C5v | C6v |
C2h | C3h | C4h | C5h | C6h |
D2 | D3 | D4 | D5 | D6 |
D2h | D3h | D4h | D5h | D6h |
D2d | D3d | D4d | D5d | D6d |
S4 | S6 | S8 | S10 | |
Td | Oh | Ih | ||
C∞v | D∞h |
Please let us know how we can improve this web app.