Printed from https://www.webqc.org

Molar Mass, Molecular Weight and Elemental Composition Calculator

Molar mass of GaGeAsSeBrKrRbSrYZrNbMoTcRfRhPdAgCdInSnSbIXeCsBaHf is 2855.8663 g/mol

Convert between GaGeAsSeBrKrRbSrYZrNbMoTcRfRhPdAgCdInSnSbIXeCsBaHf weight and moles
CompoundMolesWeight, g
GaGeAsSeBrKrRbSrYZrNbMoTcRfRhPdAgCdInSnSbIXeCsBaHf

Elemental composition of GaGeAsSeBrKrRbSrYZrNbMoTcRfRhPdAgCdInSnSbIXeCsBaHf
ElementSymbolAtomic weightAtomsMass percent
GalliumGa69.72312.4414
GermaniumGe72.6412.5435
ArsenicAs74.9216012.6234
SeleniumSe78.9612.7648
BromineBr79.90412.7979
KryptonKr83.79812.9342
RubidiumRb85.467812.9927
StrontiumSr87.6213.0681
YttriumY88.9058513.1131
ZirconiumZr91.22413.1943
NiobiumNb92.9063813.2532
MolybdenumMo95.9613.3601
TechnetiumTc96.90636513.3932
RutherfordiumRf265.116719.2832
RhodiumRh102.9055013.6033
PalladiumPd106.4213.7264
SilverAg107.868213.7771
CadmiumCd112.41113.9361
IndiumIn114.81814.0204
TinSn118.71014.1567
AntimonySb121.76014.2635
IodineI126.9044714.4436
XenonXe131.29314.5973
CesiumCs132.905451914.6538
BariumBa137.32714.8086
HafniumHf178.4916.2499

Computing molar mass step by step

First, compute the number of each atom in GaGeAsSeBrKrRbSrYZrNbMoTcRfRhPdAgCdInSnSbIXeCsBaHf:
Ga: 1, Ge: 1, As: 1, Se: 1, Br: 1, Kr: 1, Rb: 1, Sr: 1, Y: 1, Zr: 1, Nb: 1, Mo: 1, Tc: 1, Rf: 1, Rh: 1, Pd: 1, Ag: 1, Cd: 1, In: 1, Sn: 1, Sb: 1, I: 1, Xe: 1, Cs: 1, Ba: 1, Hf: 1

Then, lookup atomic weights for each element in periodic table:
Ga: 69.723, Ge: 72.64, As: 74.9216, Se: 78.96, Br: 79.904, Kr: 83.798, Rb: 85.4678, Sr: 87.62, Y: 88.90585, Zr: 91.224, Nb: 92.90638, Mo: 95.96, Tc: 96.906365, Rf: 265.1167, Rh: 102.9055, Pd: 106.42, Ag: 107.8682, Cd: 112.411, In: 114.818, Sn: 118.71, Sb: 121.76, I: 126.90447, Xe: 131.293, Cs: 132.9054519, Ba: 137.327, Hf: 178.49

Now, compute the sum of products of number of atoms to the atomic weight:
Molar mass (GaGeAsSeBrKrRbSrYZrNbMoTcRfRhPdAgCdInSnSbIXeCsBaHf) = ∑ Counti * Weighti =
Count(Ga) * Weight(Ga) + Count(Ge) * Weight(Ge) + Count(As) * Weight(As) + Count(Se) * Weight(Se) + Count(Br) * Weight(Br) + Count(Kr) * Weight(Kr) + Count(Rb) * Weight(Rb) + Count(Sr) * Weight(Sr) + Count(Y) * Weight(Y) + Count(Zr) * Weight(Zr) + Count(Nb) * Weight(Nb) + Count(Mo) * Weight(Mo) + Count(Tc) * Weight(Tc) + Count(Rf) * Weight(Rf) + Count(Rh) * Weight(Rh) + Count(Pd) * Weight(Pd) + Count(Ag) * Weight(Ag) + Count(Cd) * Weight(Cd) + Count(In) * Weight(In) + Count(Sn) * Weight(Sn) + Count(Sb) * Weight(Sb) + Count(I) * Weight(I) + Count(Xe) * Weight(Xe) + Count(Cs) * Weight(Cs) + Count(Ba) * Weight(Ba) + Count(Hf) * Weight(Hf) =
1 * 69.723 + 1 * 72.64 + 1 * 74.9216 + 1 * 78.96 + 1 * 79.904 + 1 * 83.798 + 1 * 85.4678 + 1 * 87.62 + 1 * 88.90585 + 1 * 91.224 + 1 * 92.90638 + 1 * 95.96 + 1 * 96.906365 + 1 * 265.1167 + 1 * 102.9055 + 1 * 106.42 + 1 * 107.8682 + 1 * 112.411 + 1 * 114.818 + 1 * 118.71 + 1 * 121.76 + 1 * 126.90447 + 1 * 131.293 + 1 * 132.9054519 + 1 * 137.327 + 1 * 178.49 =
2855.8663 g/mol


Mass percent compositionAtomic percent composition

Formula in Hill system is AgAsBaBrCdCsGaGeHfIInKrMoNbPdRbRfRhSbSeSnSrTcXeYZr

Computing molar mass (molar weight)

To calculate molar mass of a chemical compound enter its formula and click 'Compute'. In chemical formula you may use:
  • Any chemical element. Capitalize the first letter in chemical symbol and use lower case for the remaining letters: Ca, Fe, Mg, Mn, S, O, H, C, N, Na, K, Cl, Al.
  • Functional groups: D, T, Ph, Me, Et, Bu, AcAc, For, Tos, Bz, TMS, tBu, Bzl, Bn, Dmg
  • parenthesis () or brackets [].
  • Common compound names.
Examples of molar mass computations: NaCl, Ca(OH)2, K4[Fe(CN)6], CuSO4*5H2O, nitric acid, potassium permanganate, ethanol, fructose, caffeine, water.

Molar mass calculator also displays common compound name, Hill formula, elemental composition, mass percent composition, atomic percent compositions and allows to convert from weight to number of moles and vice versa.

Computing molecular weight (molecular mass)

To calculate molecular weight of a chemical compound enter it's formula, specify its isotope mass number after each element in square brackets.
Examples of molecular weight computations: C[14]O[16]2, S[34]O[16]2.

Definitions

  • Molecular mass (molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
  • Mole is a standard scientific unit for measuring large quantities of very small entities such as atoms and molecules. One mole contains exactly 6.022 ×1023 particles (Avogadro's number)

Steps to calculate molar mass

  1. Identify the compound: write down the chemical formula of the compound. For example, water is H2O, meaning it contains two hydrogen atoms and one oxygen atom.
  2. Find atomic masses: look up the atomic masses of each element present in the compound. The atomic mass is usually found on the periodic table and is given in atomic mass units (amu).
  3. Calculate molar mass of each element: multiply the atomic mass of each element by the number of atoms of that element in the compound.
  4. Add them together: add the results from step 3 to get the total molar mass of the compound.

Example: calculating molar mass

Let's calculate the molar mass of carbon dioxide (CO2):

  • Carbon (C) has an atomic mass of about 12.01 amu.
  • Oxygen (O) has an atomic mass of about 16.00 amu.
  • CO2 has one carbon atom and two oxygen atoms.
  • The molar mass of carbon dioxide is 12.01 + (2 × 16.00) = 44.01 g/mol.

Lesson on computing molar mass

Weights of atoms and isotopes are from NIST article.

Related: Molecular weights of amino acids

molecular weights calculated today
Please let us know how we can improve this web app.
Menu Balance Molar mass Gas laws Units Chemistry tools Periodic table Chemical forum Symmetry Constants Contribute Contact us
How to cite?